Patterns of Histone Methylation and Chromatin Organization in Grapevine Leaf

Rachel Schwope

EPIGEN

May 24-27, 2016

Plant of interest: Vitis vinifera

Culturally important

An economically vital organism for Italy and beyond

Scientifically intriguing

A clonal organism whose genome has not undergone meiosis – or its developmental program – in centuries.

Chromatin – the structural and functional complex of DNA and binding proteins

Chromatin is specialized to maintain genomic states

- A recent ChIP-Seq meta-study identified 9 states of chromatin in *Arabidopsis* (Sequeira-Mendes, Plant Cell 2014)
 - 4 types = high transcription
 - 5 types = low transcription

What defines a Chromatin State?

Functions of Specific Histone Modifications at H3

H3K4me3

- Recruits transcription initiation factors
- Promotes open conformation

H3K9me2

- In *Arabidopsis,* bound by CMT3 DNA methylase
- In maize, increased at transposons and some genes

H3K27me3

- Associated with Polycomb
- In maize, found in genedense chromatin arms, not at pericentric chromatin

Layman and Zuo, Front. Cell. Neurosci., 07 January 2015

Methodology

Where is H3K4me3 found in grapevine leaves?

- Peaks are generally at the 5' ends of genes
- Have a broader "shoulder" at the 3' side of the peak

Chromosome 2: 3,198,150..3,225,396

H3K4me3 distribution across genes

H3K4me3 coverage over gene body

• As gene size increases, H3K4me3 covers a proportionally smaller amount of the gene

100% of gene length

How Enriched is H3K4me3 in Grapevine leaf?

H3K4me3 Enrichment generally increases with Peak Length

H3K4me3 Peak Enrichment vs. peak length

...But only correlates weakly with Transcript Accumulation

H3K4me3 enrichment versus FPKM for Pinot Noir

H3K4me3 Fold Enrichment

FPKM data from M. Miculan

Peak length also correlates weakly with Transcript Accumulation

H3K4me3 Peak length versus FPKM for Pinot Noir

FPKM data from M. Miculan

Where else do we find H3K4me3 enrichment?

Long non-coding RNAs: at least 200 bp long

- 2044 intergenic long-ncRNAs in *Vitis* genome (*Genoscope*)
- In leaf, 219 of these (11%) correlate with H3K4me3 signal

What are the IncRNA species co-occur with H3K4me3?

Total: 219 IncRNAs

 15 of these encode miRNAs (*mIRbase.org*)

 204 have no discernable miRNA structure

How do Heterochromatic modifications compare?

Where do we find H3K9me2 and H3K27me3?

Many, but Not All Highly Repetitive TEs are Enriched

Computational Background Test

What happens when I ask MACS2 to find peaks from an **unenriched** alignment?

Separating Signal from Noise

What is the DNA methylation state at loci with modified histones?

Genome-wide average methylation

Vitis results support Arabidopsis data that DNA and histone methylation form feedback loop

Adapted from Stroud et al., 2013

M. Celii

Looking at the Global Chromatin Environment with Hi-C

Hi-C: a method of inferring the global **three-dimensional** relationships from paired-end sequence data

Hi-C Methodology

Integrative Genomics and Bioinformatics Core at the Salk Institute

A. Tocci

ChIP data corresponds with 3D structure

ChIP data corresponds with 3D structure

A. Tocci

ChIP data corresponds with 3D structure

Chromatin Organization is Highly Stable

Pinot Noir Genomic Contact Map

Chr 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | Un

Easily visualize the actual locations of unassigned regions of the genome assembly

Conclusions and Future Directions

1. Much to uncover with ChIP-Seq

- H3K4me3 results = high confidence
- Allele specific analysis in progress
- Other histone modifications will require finer analyses

- 2. Hi-C shows chromatin structure very stable
 - Try varieties other than Pinot Noir do they have the same organization?
 - Use Hi-C to improve genome assembly (in progress Aldo Tocci)

Acknowledgements

IGA

Prof. Michele Morgante Emanuele de Paoli Fabio Marroni Aldo Tocci Mirko Celii Mara Miculan Gabriele Magris

IGA Technology Services

Emanuela Aleo Federica Magni Giacomo Prete

Lab and Administration Giusi Zaina Nicoletta Felice

Stefano Grasso

European Research Council

Supported by the ERC project NOVABREED - Novel variation in plant breeding and the plant pan-genomes (Grant agreement no.: 294780)

Hi-C shows H3K4me3 is located preferentially in Loose Structural Domains

A. Tocci

H3K9me2 distribution mimics that of total TEs

A. Tocci

Transposons with K9me2 or K27me3 have higher k-mer count

K-mer count of TEs from Chromosome 2

Enriching for Antibody-associated DNA with Chromatin Immunoprecipitation

H3K9me2 Enrichment generally increases with Peak Size

H3K9me2 Peak Fold Enrichment vs. Peak Length

Transposons with K9me2 or K27me3 have higher k-mer count

K-mer count of TEs in Chromosome 2

How do heterochromatic modifications at histones relate to DNA methylation?

How do heterochromatic modifications at histones relate to DNA methylation?

position (percentiles)

position (percentiles)