PAG XXV, January 14-18, 2017 - San Diego, CA, USA

Pan Genome and Structural Variation Analysis using different Approaches for de novo Assembly and Haplotype Reconstruction

> **Davide Scaglione** dscaglione@igatechnology.com

ISTITUTO DI GENOMICA APPLICATA

Mapping-based SVs identification

- De novo assembly of 6 grape varieties
- Reconstruction/improvement of reference chromosomes with Hi-C data
- Impact of SVs in gene-space and RNA-Seq analyses

Mapping-based SVs identification

Detecting Structural Variation Using NGS Data

Marroni et al. Curr. Opin. Pl. Biol. 2014

SV Detection and SV Origin

Deletion detection

Insertion detection

SV detected: 1-25 Kbp

SV Variation: Insertions

Total insertions54500Total length316.84 MbpN. of genes involved2351

Transposon insertions

SV Variation: Deletions

Total deletions7856Total length42.89 MbpN. of genes involved436

Real deletions (DSB+NHEJ) Transposon excisions Comparing the two homologous chromosomes : Sequencing of 4 highly homozygous individuals from self-pollinated Rkatsiteli allowed to cover 93% of chromosomes lenght with haplotype-specific reads

Broad definition

	Size (Mb)
Reference genome	486.21
Pan genome	752.11
Core genome	386.82
Dispensable genome	365.29

Strict definition

	Size (Mb)
Reference genome	486.21
Pan genome	752.11
Core genome	423.06
Dispensable genome	329.05

Larger SVs (of the CNV type) involving genes are also observed

De novo assembly of 6 grape varieties

	Cov. (X)		Cov. (X)	
Traminer		Rkatsiteli		
overlapping fragment	20	overlapping fragment	22	
fragment	33	fragment	32	
	53		55	a)
jumping	19	jumping	29	
long jumping	16	long jumping	12	b)
	36		40	~)
Gouais Blanc		Kishmish Vatkana		
overlapping fragment	28	overlapping fragment	29	
fragment	35	fragment	23	c)
	62		52	
jumping	16	jumping	24	
long jumping	14	long jumping	10	
	30		35	
Cabernet Franc		Sangiovese		
overlapping fragment	55	overlapping fragment	33	
	55	fragment	34	
			68	
jumping	23	jumping	23	
long jumping	10	long jumping	22	
	33		45	

- ~30X Overlapping fragment libraries
- b) ~20X Non-overlapping fragment libraries
- c) ~20X 3kb Jumping libraries + ~10X 10kb (long) Jumping libraries

ALLPATHS-LG performances

Scaffold metrics	traminer	gouais blanc	cabernet franc	rkatsiteli	kishmish vatkana	sangiovese	pn40024
Total (bp)	678,662,631	743,730,069	711,707,043	753,744,202	610,410,426	691,235,812	521,491,794
Sequences (#)	8,676	9,564	12,485	10,089	8,546	15,667	6,016
N50 (#)	484	524	1,178	612	457	627	553
L50 (bp)	413,025	408,071	178,391	352,572	364,852	301,183	264,099
Gaps (#)	67,484	66,217	55,190	69,862	64,039	61,417	40,378
Median gap length (bp)	4,012	5,545	4,405	5,200	5,728	3,581	3,825

Final scaffold length is artificially inflated by overestimation of gap size

Alignment coverage as a proxy to catalog hemizygous contigs

Classification of hemizygous contigs

Validation of PEM-detected SV with de novo assemblies

Reconstruction/improvement of reference chromosomes with Hi-C data

In situ Hi-C and TCC in Vitis vinifera

Advantages:

- Reduced frequency of spurious contacts due to random ligation in diluted solution
- Faster protocol (requiring 3 days instead of 7)
- Enables higher resolution (up to ~1Kb)

Proximity information and interaction information

Improvement of PN40024 reference with Hi-C (TCC) data

Clustering improvement:

Total scaffolds: 2059

chrUn scaffolds: 1849/2059

Assigned chrUn scaffolds: 1834/1849 ~ 39 Mb added

- Hi-C
- Genetic maps
- Mate-pairs

Release of an impoved golden path for 12X Sanger scaffolds (no changes to scaffolds sequences) Candidate release date: April 1st 2017

Chromosome-scale reconstruction of rkatsiteli assembly

Chr01 (ref)

Chr02 (ref)

Chr03 (ref)

HindIII

Mbol

Chromosome-scale reconstruction of rkatsiteli assembly

Chr07

	HindIII	Mbol
Clustering efficiency (19 groups) (bp)	95.16%	95.38%
Ordering efficiency (bp):	80.64%	90.05%

Rkatsiteli: Gene prediction with Maker-P

Evidences:

- RNA-Seq from leaves, roots and berries
- V. vinifera EST collection (NCBI)
- PN40024 reference transcripts (v2.1)
- V. vinifera proteins (NCBI)

Training of Augustus and SNAP ab initio predictors

32,527 gene models (30,406 on reconstructed pseudomolecules)

Segments belonging to "random" chromosomes in PN40024

Impact of SVs in gene-space and RNA-Seq analyses

Raw fragment count per gene model

Raw frag. count on RK4

8690 unique syntelogs [-3 < log(FC) < 3]

3675 higher on PN40024 models 5015 higher on RK4 models

Missing exons with impact in RNA-Seq counts

Missing exons with impact in RNA-Seq counts

Or even complete missing genes

Vitis vinifera TMV resistance protein N (LOC100241404), transcript variant X2, mRNA 79% identity

RNA-Seq counts

Ab initio gene model

PN40024 reads coverage

Rkatsiteli assembly gaps

Exons with >25% missing coverage from reference PN40024 && >5 reads of RNA-Seq (berry) evidence 1669 exons 932 genes ~380 Kbp of expressed PAV coding sequence (rkatsiteli) •(short reads sepaking) Identification of TE-related SVs is far better accomplished via PEM strategies

•*De novo* assembly can be a proxy to detect contigs involved in hemizygosity

•Hi-C (in situ) can provide high quality data to reconstruct and order chromosome even starting with relatively short scaffolds

•Variety-specific gene models can actually improve (also depending on prediction accuracy) expression analysis and the investigation a previosuly uncharacterized gene-space

•Releasing an improved PN40024 golden path

•FUTURE: to implement varietal-assemblies with 10X and PacBio

Acknowledgments

Michele Vidotto Aldo Tocci Rachel Schwope Gabriele Magris Alice Fornasiero Eleonora Paparelli Fabio Marroni Gabriele Di Gaspero Michele Morgante

Federica Cattonaro Irena Jurman

Nicoletta Felice Giusi Zaina

Novabreed ERC-2011-ADG

European Research Council

Established by the European Commission