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3. SV CLASSIFICATION & ANNOTATION

V. vinifera V. armata V. rupestris

V V A

Insertion

V. vinifera V. armata V. rupestris

Deletion

A

Across the 50 grapevine varieties we

identified a total of 7,856 deletions and

54,500 insertions. While insertions were

mediated by the movement of

Transposable Elements (TEs) (Fig 2),

deletions were mostly unrelated to TE

activity and represented the removal of

random sequences mediated by double

strand breaks and further defective repair

events (Fig 3). LTR retrotransposons

involved in SV were younger than the

LTR-retros fixed in the population (Fig 4).
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Fig 2. TE composition of insertions (A) and

genome-wide distribution of class I TE’s (B).

Fig 3. TE composition of deletions (A) and

genome-wide distribution of deletions (B).

B

AA

Fig 5. Localization of the most abundant Copia families (A) and Gypsy families (B). Individual families representing the most abundant ones detected in SV

events are indicated with numbers
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Fig 1. SV classification based on two

outgroup species. A SV was classified as

insertion if the sequence was present in

vinifera, but absent in the outgroup

species (A). Vice versa, a SV was

classified as deletion, if the sequence

was present in the outgroup species, but

missing in at least one vinifera variety (B).
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5. PAN-GENOME ESTIMATION

Compared to the reference genome, each variety is

characterised by a certain amount of base-pairs that

are missing and, vice versa, by base-pairs that are in

addition (Fig 8). Considering only the small SVs, we

provided a first insight into the pan-genome size.

Since grapevine is a diploid species, we considered

dispensable only sequences completely missing in at

least one individual of the species (Fig 9).

We further classified TEs involved in SV belonging to Copia (RLC) and Gypsy (RLG) superfamilies in

families. For each family, we investigated their preference of localization compared to genomic

locations [8] (Fig 5).

For the detection of SVs we integrated the results obtained using three different

tools: DELLY [5], GASV [6] and a pipeline developed by our research group [7].

SVs were classified as insertions (Fig 1A) or deletions (Fig 1B), based on two

outgroup species (Vitis armata and Vitis rupestris) and on their phylogenetic

relationship with V. vinifera.

Genomes of individuals belonging to the same species can differ due to structural variation,

encompassing both smaller variants due to transposable elements and larger ones, which

modify the chromosomal structure. Based on these observations, a single genome might not

reflect the entire genomic complement of a species. Therefore, the concept of pan-genome,

originally introduced for bacteria [1], was extended to plants [2,3]. It is composed by a Core

Genome (CG), shared by all individuals, and a Dispensable Genome (DG), present in some

individuals, but not in all. To gain knowledge about the composition of the dispensable

fraction, Structural Variants (SVs) ranging in size between 1 Kb and 25 Kb were identified in

50 grapevine varieties, based on the paired-end mapping information derived from the

alignment of short reads to the reference genome sequence of Vitis vinifera [4].

4. SV vs GENE EXPRESSION

Fig 9. Vitis vinifera pan-genome estimation.

Fig 8. Heterozygous and homozygous SV extension (Mb). Negative values represent the Mb missing in a variety, while positive values the additional Mb.
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SVs are a very important source of genetic variation and widely

contribute to the dispensable portion, which represents the 44%

of the grape pan-genome. Not only intergenic regions were

involved, but also gene space resulted affected by SVs (Fig 10).

The movement of TEs contributed to a substantial increase of the

genome size. Intronic regions were subjected to the widest

expansion (46% of their size), followed by the intergenic space

(31%). In the near future it would be of great interest to determine

the phenotypic effects of SVs.

While promoting genetic variability, TEs

may also disrupt genes, promoter or

enhancer sequences or alter the status

of epigenetic marks, such as cytosine

methylation. On the other hand, TEs

may also increase expression of

transcription factors (Table 1,2) and

modify the gene structure (Fig 7).
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Fig 4. Insertion age estimation of LTR retrotransposons.
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TE absent (-) TE present (+)

leaves 2 352

tendrils 2 714

berries 0 410

Variety Sangiovese Rkastiteli Traminer Kismish

TE genotype -/- -/+ -/+ +/+

FPKM

leaves 0.0 25.4 30.8 90.4

tendrils 0.0 43.3 49.2 97.1

berries 0.0 34.0 35.8 80.5
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Table 1. Rkatsiteli allele-specific expression of the VIT_16s0039g01920 gene.

Table 2. FPKM levels of the VIT_16s0039g01920 gene in presence or absence of TE.

- absence of TE; + presence of TE.
Fig 7. Predicted transcripts in Rkatsiteli, based on the presence or absence of the TE.

Fig 10. Genome expansion as a conseguence of TE expansion.


